Single Isomer Cyclodextrin Derivatives as Chiral Selectors in Capillary Electrophoresis

Introduction

It is widely recognized today that chirality is an important modulator of the effects and properties of chiral substances in a variety of fields such as pharmacology, agrochemistry, food chemistry, environmental chemistry, etc. The phenomenon of chirality exists in all biological systems. Therefore, analytical methods for the determination of single enantiomers in different natural and industrial samples are required. Cyclodextrins (CDs) play an important role as chiral selectors in capillary electrophoresis (CE) and other chromatographic techniques. CD assisted CE (CD–CE) has become an attractive alternative to HPLC for chiral analysis, due to the intrinsic properties of both CE (high separation efficiency, speed of analysis, low reagent consumption, and small sample requirement) and CDs (good enantio-recognition abilities, high water solubility, UV transparency, and wide assortment of different neutral, cationic and anionic CDs with different functional groups [1], [2]).

In CD–CE, the enantiomers having identical physico-chemical properties are discriminated based on their different interaction affinity to the CDs present in the BGE.

Although many separation problems can be solved with natural CDs, the use of CD derivatives has several advantages, such as higher solubility and increased selectivity due to the ionic substituents of the molecules. The properties of the selectors can significantly influence their separation potency especially in the electromigration techniques, such as CE and electrokinetic chromatography (EKC). Large number of CD derivatives are now used in CE for chiral analysis.

Application of CDs as chiral selectors for enantio-recognition is fundamentally based on complexation (by inclusion or external) of at least a part of the analyte and various interactions between analyte and functional moieties (hydroxyls or different substituents) of the CD rims. Therefore, position and structure of the substituents can play an important role in the enantioseparation ability of a CD derivative.
CD derivatives

The hydroxyl groups present on the rim of the CD (αCD contains 18, βCD 21 and γCD 24 hydroxyl groups [3]) can be easily modified by chemical reactions with various functional groups (see Fig. 1). The degree of substitution (DS) indicates how many of the hydroxyl groups in the CD are substituted in average; the number starts with 0 for a totally unsubstituted CD up to 18, 21 or 24 for α-, β- and γCD, respectively when hydroxyl groups are completely modified. In the case of statistically substituted CD derivatives the DS is an average number [4]. It is usually not integer as randomly substituted derivatives are mixtures of several hundreds of homologues/isomers of more or less similar structure. The single isomer CD derivatives (SIDs) contain only one isomer. Typical SIDs are the mono-substituted CDs (having one substituent in a molecule) and the persubstituted CDs (having all OH groups substituted or at least all OH groups in the same positions). There are of course other SIDs as well, e.g. heptakis(2,6-di-O-methyl)-βCD. The SID should contain at least 90% of the specific isomer.

The CD derivatives can be distinguished in different ways:

- non-ionic or ionic (neutral, anionic, cationic, amphoteric)
- type of functional group (methyl, sulfate, sulfobutyl, carboxylate, amino etc.)
- monomer or polymer
- substitution pattern: randomly substituted or single isomer CD derivatives (See Fig. 2)

![Figure 1: Structure of CD; R, R’ and R” standing for potential functional groups](image-url)
In the case of the randomly multisubstituted derivatives, besides the limited reproducibility of their synthesis, the dissimilarity of isomeric structures can lead to uncertainty in their practical applications (e.g., changeable enantiorecognition properties) [5].

The kind of CD used for chiral analysis plays an important role for robustness of an analytical procedure. The resolution of racemates, for example, depends not only on the DS but also on the substitution pattern and position as well as on the purity of the CD used [6]. In addition to the separation efficiency also the migration times and migration order of the compounds may be influenced by the degree and the locus of substitution [7]. No wonder that the batch-to-batch variations of random substituted derivatives are also influential.

Both SIDs and randomly substituted CDs are commercially available. SIDs are usually of higher price because of the complexity of the synthesis and purification. SIDs help to understand the interactions between the analyte and the selector.

There can be enormous differences between the separation efficiency of SIDs and randomly substituted CDs having the same substituents.

Anionic single isomer derivatives

In the literature a lot of articles dealing with enantioseparation using CD-CE can be found. In the past twenty years single isomer CD derivatives got more and more attention. The first SIDs for CE were synthetized by Vigh et al. in 1997 [8]. These derivatives contain sulfate groups, thus obtaining permanent polyanionic charge.

Figure 2: Grouping of CD derivatives as a function of substitution pattern

<table>
<thead>
<tr>
<th>CD derivtatives</th>
<th>Randomly substituted CDs</th>
<th>Single isomer CDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non ionic CDs</td>
<td>RAMEB</td>
<td>NH2-BCD</td>
</tr>
<tr>
<td></td>
<td>HPBCD</td>
<td>IPABCD</td>
</tr>
<tr>
<td></td>
<td>SBEBCD</td>
<td>PABCD</td>
</tr>
<tr>
<td></td>
<td>etc.</td>
<td>etc.</td>
</tr>
<tr>
<td>Anionic CDs</td>
<td>CMBCD</td>
<td>HSBCD</td>
</tr>
<tr>
<td></td>
<td>OSGCD</td>
<td>HDABCD</td>
</tr>
<tr>
<td></td>
<td>etc.</td>
<td>etc.</td>
</tr>
<tr>
<td>Cationic CDs</td>
<td>QABCD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RAMEB: randomly methylated βCD
HPBCD: hydroxypropylated βCD
CMBCD: carboxymethylated βCD
SBEBCD: sulfobuthylated βCD
QABCD: quaterner-ammonium βCD
HSBCD: heptakis-6-O-sulfo-βCD
OSGCD: octakis-6-O-sulfo-βCD
HDABCD: heptakis-(2,3-di-O-acetyl)-γCD
NH2-BCD: 6-monodeoxy-6-monoamino-βCD
IPABCD: 6-monodeoxy-6-(2-hydroxy)propylamino-βCD
PABCD: 6-monodeoxy-6-(3-hydroxy)propylamino-βCD
As a first step, Vigh et al. described the synthesis of three SIDs, namely, heptakis-6-O-sulfo-β-CD (HS-βCD) [9], heptakis(2,3-di-O-acetyl-6-O-sulfo)-βCD (HDAS-βCD) [10] and heptakis(2,3-di-O-methyl-6-O-sulfo)-β-CD (HDMS-βCD) [11]. In order to further investigate the role of the cavity size in the enantiomeric separation, they synthesized three SIDs of γCD, namely octakis(2,3-di-O-acetyl-6-O-sulfo)-γCD (ODAS-γCD) [12], octakis-6-O-sulfo-γCD (OS-γCD) [13], and octakis(2,3-di-O-methyl-6-O-sulfo)-γCD (ODMS-γCD) [14], as well as three SIDs of α-CD, namely, hexakis(2,3-di-O-acetyl-6-O-sulfo)-αCD (HxDAS-αCD) [15], hexakis(6-O-sulfo)-αCD (HxS-αCD) [16] and hexakis(2,3-di-O-methyl-6-O-sulfo)-αCD (HxDMS-αCD) [17]. These selectors became commercially available and were successfully used for the separation of a large number of analytes of nonelectrolyte and weak electrolyte character in both low and high pH aqueous background electrolytes (BGEs) and acidified non-aqueous BGEs.

The advantage of this kind of selectors lies in assuring a strong interaction with any cationic analyte in addition to the analyte interaction of hydrophobic nature with the CD cavity at any pH value [18]. Sometimes, randomly substituted highly sulfated CDs succeed in the enantiomeric separation, whereas SIDs do not. For example, antiarrhythmic drugs propafenone, diprafenone and their metabolites were better enantioseparated by randomly sulfated βCD than by HDAS-βCD, HDMS-βCD and HS-βCD [19], whereas doxylamine was resolved by HS-βCD only. On the contrary, alprenolol was resolved by the randomly sulfated CD, but not by HS-βCD [20]. The randomly substituted (SCD) and single isomer sulfated CDs (HSCD) investigated in this study differed in the degree of substitution and the position of the anionic substituents. The SCD had a range of substitution from 7–11, the HSCD material had 7 sulfates/CD. A higher degree of substitution would impart a greater anionic character to the CD that might cause a more significant impact on the electrophoretic mobility of the analyte.

Sulfated γCDs (ODAS-γCD, OS-γCD, ODMS-γCD) were used for CD-EKC enantiomer separations. OS-γCD interacts with many analytes differently than its counterpart, ODAS-γCD, and its analogous βCD derivative, HS-βCD. Often, selectivity values observed with OS-γCD were different from those of other SIDs, like ODAS-γCD, HS-βCD or HDAS-βCD. Adequate, fast separations were obtained with OS-γCD in the high pH background electrolyte for a large number of analytes [21].

HxDAS-αCD, HxS-αCD and HxDMS-αCD show less interaction affinity towards many of the analytes tested than the analogous β- and γCD derivatives [15,16,17].

Carboxymethyl CDs (CM-CDs) represent another group of negatively charged CD derivatives which have already been successfully used for the separation of enantiomers of basic compounds in CE. The currently used routine CE protocols usually apply the commercially available randomly substituted CM derivatives of α-, β- and γCDs [22]. In these randomly substituted derivatives the exact position of the CM moiety on the CD skeleton can be only partially determined and varies from batch-to-batch, therefore the results achieved in CE using different batches of randomly substituted CM-CDs have a limited reproducibility. It has been
confirmed experimentally that the location of the CM group plays a significant role in the resulting enantioselectivity [23]. For this reason, Benkovics et al. synthesized a new family of single-isomer 2,3-di-O-methyl-6-O-carboxymethyl CDs with a high isomeric purity [24]. Although the use of these novel SIDs as chiral resolving agents has not been published yet, one can assume that the tunable ionization state of the carboxymethyl groups may result in special enantioselectivity.

Cationic single derivatives

Cationic CDs as chiral selectors have been much less used compared to anionic CDs. Cationic CDs are either strong-electrolytes, like those functionalized with quaternary ammonium groups, or weak electrolytes. Just as other CD derivatives, cationic CDs can be randomly substituted or SIDs. The first examples of cationic SIDs in the literature for CD-EKC applications were aminofunctionalized β CDs, such as the 6-A,D-dimethylamino-βCD [25], 6-amino-βCD [26], 6-deoxy-6-N-histamino-β-CD and 6-deoxy[4-(2-aminoethyl)imidazolyl]-6-N-histamino-β-CD [27].

In CycloLab Iványi et al. synthetized the family of single-isomer amino-β-CD derivatives containing an amino or (hydroxy)alkylamino group in one of the primary positions and applied them successfully in chiral CE. Three racemic model compounds (mandelic acid, cis-permethrinic acid, and cis-deltamethrinic acid) were separated in the experiments. One hydroxyalkyl group attached to the primary amino N-atom significantly increased both the enantioselectivity and the resolution compared to the primary amino-βCD, while two hydroxyalkyl moieties decreased them due to the predominance of steric hindrance [28].

Nonaqueous capillary electrophoresis (NACE) was successfully applied to the enantiomeric purity determination of R-flurbiprofen using 6-monodeoxy-6-mono(2-hydroxy)propylamino-β-CD (IPA-β-CD) as chiral selector. The nonaqueous BGE was made up of 20 mM IPA-β-CD, 20 mM ammonium camphor sulfonate and 40 mM ammonium acetate in methanol (Fig. 3) [29].
Fig. 3. Typical electropherograms of methanol (A), a methanolic solution of flufenamic acid (50 μg/mL, peak 1) and racemic flurbiprofen (48 μg/mL, peak 2-3) (B), a methanolic solution of R-flurbiprofen (2 mg/mL, peak 3) containing S-flurbiprofen (5 μg/mL, peak 2) and flufenamic acid (50 μg/mL, peak 1) (C) a methanolic solution of R-flurbiprofen (2 mg/mL, peak 3) containing S-flurbiprofen (2 μg/mL, peak 2) and flufenamic acid (50 μg/mL, peak 1) (D) in the presence of IPA-β-CD chiral selector [29]

Summary

In the case of the randomly multisubstituted derivatives, besides limited reproducibility of their synthesis, the dissimilarity of isomeric structures can lead to uncertainty in their practical applications (e.g., changeable enantiorecognition properties). Only the use of single-isomer derivatives can solve this problem. However, both random and single isomer derivatives have advantages and disadvantages. Generally, the use of SIDs led to more reproducible and reliable results than the randomly substituted cyclodextins. SID cyclodextrins can be suitable to develop validated methods either in pharmaceutical or in research area.
References

Erzsébet Varga
CycloLab Cyclodextrin R&D Laboratory, Ltd., Budapest, HUNGARY
BIBLIOGRAPHY & KEYWORDS

1. CDs: Derivatives, Production, Enzymes, Toxicity

Ahn, H.-J.; Li, C.; Cho, H.-B.; Park, S.; Chang, P.-S.; Kim, Y.-W.

Enzymatic synthesis of 3-O-α-maltosyl-l-ascorbate using an engineered cyclodextrin glucanotransferase

Substrate inhibition by l-ascorbic acid, Acid/base mutant, Transglycosylation

Food Chemistry, 2015, 169, 366-371; DOI:10.1016/j.foodchem.2014.07.110

Baâzaoui, M.; Béjaoui, I.; Kalfat, R.; Amdouni, N.; Hbaieb, S.; Chevalier, Y.

Preparation and characterization of nanoparticles made from amphiphilic mono and per-aminoalkyl-β-cyclodextrins

Mono- or per-substituted at the C6 methylene of the β-CD primary rim, Monobutyl derivative, Solubility

Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 365-376; DOI:10.1016/j.colsurfa.2015.08.015

Characterization of amylomaltase from Thermus filiformis and the increase in alkaline and thermo-stability by E27R substitution

Cyclization activity, Large-ring cyclodextrins

Process Biochemistry, 2015, 50, 1814-1824; DOI:10.1016/j.procbio.2015.08.006

Khuntawee, W.; Rungrotmongkol, T.; Wolschann, P.; Pongsawasdi, P.; Kungwan, N.; Okumura, H.; Hannongbua, S.

Conformation study of ε-cyclodextrin: Replica exchange molecular dynamics simulations

Large-ring cyclodextrin

Carbohydrate Polymers, 2015, In Press; DOI:10.1016/j.carbpol.2015.10.018

Li, Y.-F.; Ha, Y.-M.; Guo, Q.; Li, Q.-P.

Synthesis of two β-cyclodextrin derivatives containing a vinyl group

β-CD maleate, β-CD itaconate, Semi-dry process, Esterification

Carbohydrate Research, 2015, 404, 55-62; DOI:10.1016/j.carres.2014.11.012

Møller, M. S.; Windahl, M. S.; Sim, L.; Bøjstrup, M.; Hachem, M. A.; Hindsgaul, O.; Palcic, M.; Svensson, B.; Henriksen, A.

Oligosaccharide and substrate binding in the starch debranching enzyme barley limit dextrinase
Ojha, S.; Mishra, S.; Chand, S.
Production of isomalto-oligosaccharides by cell bound α-glucosidase of Microbacterium sp.

Rakmai, J.; Cheirsilp, B.
Continuous production of β-cyclodextrin by cyclodextrin glycosyltransferase immobilized in mixed gel beads: Comparative study in continuous stirred tank reactor and packed bed reactor

Rakmai, J.; Cheirsilp, B.; Prasertsan, P.
Enhanced thermal stability of cyclodextrin glycosyltransferase in alginate–gelatin mixed gel beads and the application for β-cyclodextrin production

Rojas, M. J.; Castral, T. C.; Giordano, R. L.; Tardioli, P. W.
Development and validation of a simple high performance liquid chromatography – Evaporative light scattering detector method for direct quantification of native cyclodextrins in a cyclization medium

Saburi, W.; Okuyama, M.; Kumagai, Y.; Kimura, A.; Mori, H.
Biochemical properties and substrate recognition mechanism of GH31 α-glucosidase from Bacillus sp. AHU 2001 with broad substrate specificity

Savage, T.; Mitchell, J.; Trivedi, V.; Wicks, S.; Waters, L. J.
Continuous tank reactor synthesis of highly substituted sulphobutylether β-cyclodextrins
Shao, K.; Wang, H.; Peng, A.

Inclusion of CdS quantum dot into beta-cyclodextrin crystal by simple rapid crystallization

Crystallization of cyclodextrin in acetone, Quantum dot/cyclodextrin composite

Journal of Crystal Growth, 2015, 409, 10-13; DOI:10.1016/j.jcrysgro.2014.09.022

2. CD complexes: Preparation, Properties in solution and in solid phase, Specific guests

Abdel-Shafi, A. A.; Ismail, M. A.; Al-Shihry, S. S.

Effect of solvent and encapsulation in β-cyclodextrin on the photophysical properties of 4-[5-(thiophen-2-yl)furan-2-yl]benzamidine

Bichalcophene derivative, Hydrogen bonding, Inclusion complexes, Excited state decay, Fluorescence

Araki, J.; Sainou, N.

Amino acid-derivatized slide-ring gels: Chemical crosslinking of polyrotaxane conjugates with different amino acid pendant groups

Alanine, Phenylalanine, Poly(ethylene glycol), α-Cyclodextrin, 1,1’-Carbonyldiimidazole, Esterification, Hexamethylene diisocyanate

Polymer, 2015, 74, 133-143; DOI:10.1016/j.polymer.2015.07.060

Arslan, M.; Tasdelen, M. A.; Uyar, T.; Yagci, Y.

Poly(epsilon caprolactone)/clay nanocomposites via host–guest chemistry

Cyclodextrin-modified montmorillonite, Succinic anhydride, Intercalated/exfoliated morphologies

European Polymer Journal, 2015, 71, 259-267; DOI:10.1016/j.eurpolymj.2015.08.006

Self-association of 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin tuned by poly(decylviologen) and sulfobutylether-β-cyclodextrin

Dyes with controlled state of aggregation, Nanofiber formation, Ternary complex

Ivanova, T.; Mircheva, K.; Balashev, K.; Panaiotov, I.; Boury, F.

Monolayer kinetic model of formation of β-cyclodextrin–β-carotene inclusion complex

Measuring the decrease of the surface area versus time, Langmuir monolayer

Colloids and Surfaces B: Biointerfaces, 2015, 135, 542-548; DOI:10.1016/j.colsurfb.2015.07.055
Jordan, J.; Gibb, B.

Water-Soluble Cavitands

Resorcinarene, Pillarennes, Cucurbiturils, Cyclodextrins

Reference module in chemistry, Molecular sciences and chemical engineering, Elsevier, 2015, -; DOI:10.1016/B978-0-12-409547-2.10789-9

Kuttiyawong, K.; Saehu, S.; Ito, K.; Pongsawasdi, P.

Synthesis of large-ring cyclodextrin from tapioca starch by amylomaltase and complex formation with vitamin E acetate for solubility enhancement

Antioxidant activity

Process Biochemistry, 2015, 50, 2168-2176; DOI:10.1016/j.procbio.2015.10.014

Li, Y.; Guo, H.; Zheng, J.; Gan, J.; Wu, K.; Lu, M.

Thermoresponsive and self-assembly behaviors of poly(oligo(ethylene glycol) methacrylate) based cyclodextrin cored star polymer and pseudo-graft polymer

Adamantyl pendants, Thermally induced aggregation

Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 471, 178-189; DOI:10.1016/j.colsurfa.2015.01.024

Use of liquid crystals for imaging different inclusion abilities of α-cyclodextrin and β-cyclodextrin toward cetyltrimethyl ammonium bromide

Optical transition from the dark to the bright state, Visual method for selection of the correct CD molecules for interaction with surfactant molecules

Chemical Physics Letters, 2015, 637, 189-194; DOI:10.1016/j.cplett.2015.08.021

Liu, B.; Zeng, J.; Chen, C.; Liu, Y.; Ma, H.; Mo, H.; Liang, G.

Interaction of cinnamic acid derivatives with β-cyclodextrin in water: Experimental and molecular modeling studies

Caffeic acid, Ferulic acid, p-Coumaric acid, Inclusion complex, ONIOM (our Own N-layer Integrated Orbital molecular Mechanics) calculations

Food Chemistry, 2016, 194, 1156-1163; DOI:10.1016/j.foodchem.2015.09.001

Lopes, J. F.; Jr., C. S. N.; Anconi, C. P.; Santos, H. F.; Almeida, W. B.

Inclusion complex thermodynamics: The β-cyclodextrin and sertraline complex example

Møller-Plesset second-order perturbation theory, DFT

Journal of Molecular Graphics and Modelling, 2015, 62, 11-17; DOI:10.1016/j.jmgm.2015.08.008

Lu, H.; Yang, X.; Li, S.; Zhang, Y.; Sha, J.; Li, C.; Sun, J.

Study on a new cyclodextrin based metal–organic framework with chiral helices

Left-handed helical channels, Synthesis, Inclusion

Inorganic Chemistry Communications, 2015, 61, 48-52; DOI:10.1016/j.inoche.2015.08.015

Influence of microheterogeneity on the solution phase photophysics of a newly synthesised, environment sensitive fluorophore 2-((7,8-dimethyl-1-oxo-2,3,4,9-tetrahydro-1H-carbazol-6-yl)oxy)acetic acid and its tagged derivative

Bio-mimicking environments, β-Cyclodextrins, Micropolarities, 1-Keto-1,2,3,4-tetrahydrocarbazole

Narayanan, G.; Gupta, B. S.; Tonelli, A. E.

Enhanced mechanical properties of poly (ε-caprolactone) nanofibers produced by the addition of non-stoichiometric inclusion complexes of poly (ε-caprolactone) and α-cyclodextrin

Electrospinning, Enhanced thermal stability, Tensile strength, Pseudorotaxanes

Polymer, 2015, 76, 321-330; DOI:10.1016/j.polymer.2015.08.045

Pan, J.; Wang, L.; Zhang, G.; Gong, D.

Intercalation of 2-butyl-4-methylphenol to G–C rich region of DNA and the role of hydroxypropyl-β-cyclodextrin

Competitive binding with methylene blue, Calf thymus DNA, Molecular modeling

Journal of Photochemistry and Photobiology B: Biology, 2015, 151, 125-134; DOI:10.1016/j.jphotobiol.2015.07.021

Periasamy, R.; Kothainayaki, S.; Sivakumar, K.

Preparation, physicochemical analysis and molecular modeling investigation of 2,2′-bipyridine: β-Cyclodextrin inclusion complex in solution and solid state

Co-precipitation method, Atomic force microscope, UV - fluorescence spectrum, Molecular docking

Journal of Molecular Structure, 2015, 1100, 59-69; DOI:10.1016/j.molstruc.2015.07.026

Periasamy, R.; Kothainayaki, S.; Sivakumar, K.

Investigation on inter molecular complexation between 4,4′-methylene-bis(N,N-dimethylaniline) and β-cyclodextrin: Preparation and characterization in aqueous medium and solid state

Co-precipitation method, Atomic Force Microscope, Differential Scanning Calorimetry, Molecular docking study

Journal of Molecular Structure, 2015, 1080, 69-79; DOI:10.1016/j.molstruc.2014.09.046

Prabhu, A. A. M.; Kumar, G. S.; Fatiha, M.; Sorimuthu, S.; Raj, M. S.

Encapsulation of phenylalanine and 3,4-dihydroxyphenylalanine into β-cyclodextrin: Spectral and molecular modeling studies

Hydrophobic and H-bond interaction, PM3 calculations

Journal of Molecular Structure, 2015, 1079, 370-382; DOI:10.1016/j.molstruc.2014.08.045

Prema, D.; Sivakumar, K.

Inclusion complexation of acetanilide into the β-cyclodextrin nanocavity: A computational approach
Electrostatic potential, PM3

Prochowicz, D.; Kornowicz, A.; Justyniak, I.; Lewiński, J.

Metal complexes based on native cyclodextrins: Synthesis and structural diversity

Review, Monomeric species, Dinuclear systems, Homo- and heterometallic sandwich-type complexes, Supramolecular chemistry

Rogez-Florent, T.; Azaroual, N.; Goossens, L.; Goossens, J.-F.; Danel, C.

NMR investigation of the complexation and chiral discrimination of pyrazole sulfonamide derivatives with cyclodextrins

HP-β-CD, Me-β-CD, NH_2-β-CD, Chiral discrimination

Carbohydrate Polymers, 2015, 115, 598-604; DOI:10.1016/j.carbpol.2014.09.046

Sengupta, C.; Sarangi, M. K.; Sau, A.; Mandal, D.; Basu, S.

A case study of photo induced electron transfer between riboflavin and aliphatic amine: Deciphering different mechanisms of ET operating from femtosecond to microsecond time domain

Organized assemblies of β-cyclodextrin, Magnetic field, Radical ions/pairs, Transient absorption, H-abstraction

Synthesis and structure of new carbohydrate metal–organic frameworks and inclusion complexes

Quercetin, Multi-functional green crystalline solid material, β-Cyclodextrin

Journal of Molecular Structure, 2015, 1101, 14-20; DOI:10.1016/j.molstruc.2015.08.020

3. CDs in Drug Formulation

Surface engineered cyclodextrin embedded polymeric nanoparticles through host–guest interaction used for drug delivery

β-CD grafted poly(acrylic acid), Polycaprolactone–poly(ethylene glycol) nanoparticles, Spherical core-shell structure, PTX, Cytotoxicity, Surface modification

Chemical Engineering Science, 2015, 125, 121-128; DOI:10.1016/j.ces.2014.07.045

Aktaş, Y.; Yenice, İ.; Bilensoy, E.; Hincal, A. A.

Amphiphilic cyclodextrins as enabling excipients for drug delivery and for decades of scientific collaboration: Tribute to a distinguished scientist, French representative and friend – A historical perspective
Prof. Dominique Duchene, Prof. Atilla Hıncal, Brain delivery, Ocular drug delivery, Nanoparticles

Albertini, B.; Iraci, N.; Schoubben, A.; Giovagnoli, S.; Ricci, M.; Blasi, P.; Rossi, C.

β-cyclodextrin hinders PLGA plasticization during microparticle manufacturing

Polylactide-co-glycolide, Ketoprofen, Solvent diffusion/evaporation method, Hindered physical interaction with the polymer chains, Molecular dynamics simulations

Anirudhan, T. S.; Divya, P. L.; Nima, J.

Synthesis and characterization of novel drug delivery system using modified chitosan based hydrogel grafted with cyclodextrin

Chitosan coated magnetic nanoparticles, Acrylic acid, Ethylenediamine derivative of β-cyclodextrin, Curcumin, Cytotoxicity

Chemical Engineering Journal, 2016, 284, 1259-1269; DOI:10.1016/j.cej.2015.09.057

Arslan, M.; Gevrek, T. N.; Sanyal, R.; Sanyal, A.

Fabrication of poly(ethylene glycol)-based cyclodextrin containing hydrogels via thiol-ene click reaction

Heptavalent thiol-functionalized β-cyclodextrin as crosslinkers, Radical-induced thiol-ene click chemistry, Puerarin, Drug releasing hydrogels, Micro-patterned hydrogels

European Polymer Journal, 2015, 62, 426-434; DOI:10.1016/j.eurpolymj.2014.08.018

Blasina, F.; Vaamonde, L.; Silvera, F.; Tedesco, A. C.; Dajas, F.

Intravenous nanosomes of quercetin improve brain function and hemodynamic instability after severe hypoxia in newborn piglets

Brain protective effects, Lecithin/cholesterol/cyclodextrin nanosomes, Perinatal asphyxia

Neurochemistry International, 2015, 89, 149-156; DOI:10.1016/j.neuint.2015.08.007

Bragagni, M.; Bozdag, M.; Carta, F.; Scozzafava, A.; Lanzi, C.; Masini, E.; Mura, P.; Supuran, C. T.

Cyclodextrin complexation highly enhances efficacy of arylsulfonylureido benzenesulfonamide carbonic anhydrase inhibitors as a topical antiglaucoma agents

Sulfonamides, γ-CD, HP-γ-CD, HP-β-CD, HE-β-CD, Topical intraocular pressure (IOP) lowering effects, Rabbits

Inclusion complex of ellagic acid with β-cyclodextrin: Characterization and in vitro anti-inflammatory evaluation

Hydrogen bonding, Solubility, Dissolution, Molecular modeling

Journal of Molecular Structure, 2015, 1105, 308-315; DOI:10.1016/j.molstruc.2015.08.054

Stabilization of curcumin against photodegradation by encapsulation in gamma-cyclodextrin: A study based on chromatographic and spectroscopic (Raman and UV-visible) data

Demethoxylation, Isomerization of keto-enol to diketo form

Vibrational Spectroscopy, 2015, 81, 106-111; DOI:10.1016/j.vibspec.2015.10.008

Ceballos, L.; Alvarez, L.; Mackenzie, C.; Geary, T.; Lanusse, C.

Pharmacokinetic comparison of different flubendazole formulations in pigs: A further contribution to its development as a macrofilaricide molecule

HP-β-CD, Aqueous carboxymethyl cellulose-suspension, Tween 80-based formulation, Absorption pattern, Pharmaceutical preparations

International Journal for Parasitology: Drugs and Drug Resistance, 2015, 5, 178-184; DOI:10.1016/j.ijpddr.2015.09.001

Ceborska, M.; Szwed, K.; Asztemborska, M.; Wszelako-Rylik, M.; Kicińska, E.; Suwińska, K.

Study of β-cyclodextrin inclusion complexes with volatile molecules geraniol and α-terpineol enantiomers in solid state and in solution

Water solubility, Bioavailability, Host-guest, host-host and guest-guest interactions

Chemical Physics Letters, 2015, 641, 44-50; DOI:10.1016/j.cplett.2015.10.018

Rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy

Magnetic core, Gatekeeper β-cyclodextrin, Platinum(IV) prodrug, Peptide ligand, Cancer targeting, Doxorubicin

Biomaterials, 2015, 76, 87-101; DOI:10.1016/j.biomaterials.2015.05.053

Chen, Y.; Wang, Y.; Jin, Q.; Ji, J.

Zwitterionic pendant polymer and doxorubicin decorated β-cyclodextrin guest–host micelles for efficient drug delivery

Journal of Controlled Release, 2015, 213, e129-e130; DOI:10.1016/j.jconrel.2015.05.218

Serum and tissue pharmacokinetics of silibinin after per os and i.v. administration to mice as a HP-β-CD lyophilized product

Hepatoprotective and antioxidant agent, Water-soluble silibinin-hydroxypropyl-β-cyclodextrin lyophilized product

Desai, S.; Poddar, A.; Sawant, K.

Formulation of cyclodextrin inclusion complex-based orally disintegrating tablet of
eslicarbazepine acetate for improved oral bioavailability

Anti-epileptic action, Solvent evaporation method, Bioavailability, β-cyclodextrin, Solid dispersion

Materials Science and Engineering: C, 2016, 58, 826-834; DOI:10.1016/j.msec.2015.09.019

Devasari, N.; Dora, C. P.; Singh, C.; Paidi, S. R.; Kumar, V.; Sobhia, M. E.; Suresh, S.

Inclusion complex of erlotinib with sulfobutyl ether-β-cyclodextrin: Preparation, characterization, in silico, in vitro and in vivo evaluation

In vivo bioavailability studies, Solubility enhancement

Carbohydrate Polymers, 2015, 134, 547-556; DOI:10.1016/j.carbpol.2015.08.012

Ding, J.; Li, J.; Mao, S.

Development and evaluation of vinpocetine inclusion complex for brain targeting

Intranasal administration, Rats, Bioavailability, Cyclodextrin, Citric acid

Asian Journal of Pharmaceutical Sciences, 2015, 10, 114-120; DOI:10.1016/j.ajps.2014.08.008

Dora, C. P.; Trotta, F.; Kushwah, V.; Devasari, N.; Singh, C.; Suresh, S.; Jain, S.

Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability

Enhanced dissolution efficiency, In vitro cytotoxicity study and apoptosis assay, Enhanced oral bioavailability, Solubility enhancement

Carbohydrate Polymers, 2016, 137, 339-349; DOI:10.1016/j.carbpol.2015.10.080

Dufour, G.; Bigazzi, W.; Wong, N.; Boschini, F.; de Tullio, P.; Piel, G.; Cataldo, D.; Evrard, B.

Interest of cyclodextrins in spray-dried microparticles formulation for sustained pulmonary delivery of budesonide

Control airway inflammation associated with asthma, Hydroxypropyl-β-cyclodextrin, Decreasing systemic side effects, Powder inhalation

International Journal of Pharmaceutics, 2015, 495, 869-878; DOI:10.1016/j.ijpharm.2015.09.052

Gaffey, A. C.; Chen, M. H.; Venkataraman, C. M.; Trubelja, A.; Rodell, C. B.; Dinh, P. V.; Hung, G.; MacArthur, J. W.; Soopan, R. V.; Burdick, J. A.; Atluri, P.

Injectable shear-thinning hydrogels used to deliver endothelial progenitor cells, enhance cell engraftment, and improve ischemic myocardium

Hyaluronic acid, Interactions of adamantane-β-cyclodextrin-modified HA, Direct cell delivery, Migration of the enhanced green fluorescent proteins, Increase in vasculogenesis, Improvements in ventricular function, Cellular therapy

The Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 1268-1277; DOI:10.1016/j.jtcvs.2015.07.035

Hexagonal-shaped chondroitin sulfate self-assemblies have exalted anti-HSV-2 activity

*Mixing hydrophobically-modified chondroitin sulfate with α-cyclodextrin, Longer alkyl
chain lengths, Nanoassembly
Carbohydrate Polymers, 2016, 136, 113-120; DOI:10.1016/j.carbpol.2015.08.054

Gong, X.-S.; Jiang, R.-J.; Liao, X.-L.; Xie, H.-D.; Ma, X.; Gao, C.-Z.; Yang, B.; Zhao, Y.-L.
Synthesis, characterization and in vitro evaluation of a series of novel polyrotaxane-based delivery system for artesunate
Artesunate covalently bound to a cyclodextrin, Cytotoxicity
Carbohydrate Research, 2015, 412, 7-14; DOI:10.1016/j.carres.2015.04.021

A phase IIb, multicenter, open-label, safety, and efficacy study of high-dose, propylene glycol-free melphalan hydrochloride for injection (EVOMELA) for myeloablative conditioning in multiple myeloma patients undergoing autologous transplantation
Multiple myeloma, Captisol-enabled melphalan formulation, Safety profile, Stem cell transplantation
Biology of Blood and Marrow Transplantation, 2015, 21, 2100-2105; DOI:10.1016/j.bbmt.2015.08.026

Efficient antimicrobial activity and reduced toxicity of 1-dodecyl-3-methylimidazolium tetrafluoroborate ionic liquid/β-cyclodextrin complex
Standard agar disk diffusion method
Chemical Engineering Journal, 2016, 284, 1136-1145; DOI:10.1016/j.cej.2015.09.041

Holm, R.; Olesen, N. E.; Alexandersen, S. D.; Dahlgaard, B. N.; Westh, P.; Mu, H.
 Thermodynamic investigation of the interaction between cyclodextrins and preservatives — Application and verification in a mathematical model to determine the needed preservative surplus in aqueous cyclodextrin formulations
Maintain the desired conservation effect, Benzoic acid, Methyl- and propyl-paraben, Equilibrium systems, Stability constant

Jóhannsdóttir, S.; Jansook, P.; Stefánsson, E.; Loftsson, T.
Development of a cyclodextrin-based aqueous cyclosporin A eye drop formulations
Cyclic polypeptide drug, Aqueous vehicle containing CyA/cyclodextrin, αCD, γCD and mixtures thereof, HPγCD, HPαCD, Dry eye disease, Nanoparticle formation

Elimination kinetics and molecular reaction mechanisms of cyclosarin (GF) by an oxime substituted β-cyclodextrin derivative in vitro
Covalent mono, bis, tris and tetrakis conjugates, Role of the pyridinium aldoxime group
on the cyclodextrin ring, Antidote against nerve agent toxicity, Detoxification, Supramolecular scavenger

Toxicology Letters, 2015, 239, 41-52; DOI:10.1016/j.toxlet.2015.08.007

Kryjewski, M.; Goslinski, T.; Mielcarek, J.

Functionality stored in the structures of cyclodextrin–porphyrinoid systems

Porphyrins, Phthalocyanines, Chlorins, Biomimetics, Hemoglobin mimicking, Light harvesting, Photodynamic therapy

Coordination Chemistry Reviews, 2015, 300, 101-120; DOI:10.1016/j.ccr.2015.04.009

Investigations of bisacodyl with modified β-cyclodextrins: Characterization, molecular modeling, and effect of PEG

Hydroxypropyl-β-cyclodextrin, 2,6-Di-O-methyl-β-cyclodextrin, Polyethylene glycol, Isothermal titration calorimetry

Carbohydrate Polymers, 2015, 134, 82-91; DOI:10.1016/j.carbpol.2015.07.074

Li, S.; Zhai, Y.; Yan, J.; Wang, L.; Xu, K.; Li, H.

Effect of preparation processes and structural insight into the supermolecular system: Bisacodyl and β-cyclodextrin inclusion complex

Co-crystallization, Co-evaporation, Co-grinding, Molecular modeling

Materials Science and Engineering: C, 2016, 58, 224-232; DOI:10.1016/j.msec.2015.08.036

Liu, H.; Taylor, L. S.; Edgar, K. J.

The role of polymers in oral bioavailability enhancement; A review

Cyclodextrins, Cellulosic polymers, Amorphous solid dispersion, Aqueous solubility enhancement, Drug solubilization and stabilization

Polymer, 2015, 77, 399-415; DOI:10.1016/j.polymer.2015.09.026

Liu, M.; Chen, A.; Wang, Y.; Wang, C.; Wang, B.; Sun, D.

Improved solubility and stability of 7-hydroxy-4-methylcoumarin at different temperatures and pH values through complexation with sulfobutyl ether-β-cyclodextrin

Gibbs–Helmholtz equation, Phase-solubility, Circular dichroism, NMR

Food Chemistry, 2015, 168, 270-275; DOI:10.1016/j.foodchem.2014.07.061

Louiz, S.; Labiadh, H.; Abderrahim, R.

Synthesis and spectroscopy studies of the inclusion complex of 3-amino-5-methyl pyrazole with beto-cyclodextrin

Anti-inflammatory, SEM, NMR

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 134, 276-282; DOI:10.1016/j.saa.2014.06.028

Ma, P.-P.; Luo, S.-X.; Wang, J.; Xu, L.-S.; Wang, Z.-Z.

β-cyclodextrin based colon targeted delivery systems of aspirin: Synthesis, and in
vitro assessment

Journal of Controlled Release, 2015, 213, e150; DOI:10.1016/j.jconrel.2015.05.254

Maestrelli, F.; Bragagni, M.; Mura, P.

Advanced formulations for improving therapies with anti-inflammatory or anaesthetic drugs: A review

Micro- and nanotechnologies in pain management, Cyclodextrin complexation, Solid dispersions, Vesicular systems

Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review

Inclusion complex formation with cyclodextrin

Medarević, D.; Kachrimanis, K.; Djurić, Z.; Ibrić, S.

Influence of hydrophilic polymers on the complexation of carbamazepine with hydroxypropyl-β-cyclodextrin

Soluplus®, Hydroxypropyl methylcellulose–Metolose®, Spray-drying, Molecular modeling, Dissolution rate enhancement

European Journal of Pharmaceutical Sciences, 2015, 78, 273-285; DOI:10.1016/j.ejps.2015.08.001

Neto, R.; Cardoso, A.; Silva, C.

Functional substrates for the gradual release of agents

Functional textiles, Cotton, Polyamide, Aescin, Treatment of varicose veins, Wash fastness, β-Cyclodextrins

Progress in Organic Coatings, 2015, 78, 474-479; DOI:10.1016/j.porgcoat.2014.07.006

de Oliveira, C.; Ferreira, N.; Mota, G.

A DFT study of infrared spectra and Monte Carlo predictions of the solvation shell of praziquantel and β-cyclodextrin inclusion complex in liquid water

Molecular mechanics simulations, Solute-solvent interaction

Comparative evaluation of the effect of cyclodextrins and pH on aqueous solubility of apigenin

Flavonoid, α-CD, β-CD, γ-CD, SBE-β-CD, HP-β-CD, RM-β-CD, Increased antioxidant activity, Phase solubility studies

Journal of Pharmaceutical and Biomedical Analysis, 2016, 117, 210-216; DOI:10.1016/j.jpba.2015.08.019
Paulsen, Z.; Onani, M. O.; Allard, G. R.; Kiplagat, A.; Okil, J. O.; Dejene, F. B.; Mahanga, G. M.

The effect of varying the capping agent of magnetic/luminescent Fe$_3$O$_4$–InP/ZnSe core–shell nanocomposite

Contrast agents for magnetic resonance imaging, Multifunctional drug carrier system, Magnetic separation of cells, 3-Mercaptopropionic acid, Oleylamine, β-Cyclodextrin, Photoluminescence

Physica B: Condensed Matter, 2016, 480, 156-162; DOI:10.1016/j.physb.2015.09.005

Punitha, N.; Ramesh, P.; Geetha, D.

Spectral, morphological and antibacterial studies of β-cyclodextrin stabilized silver – Chitosan nanocomposites

Stabilizing agent β-CD

Rajamohan, R.; Nayaki, S. K.; Sivakumar, K.; Swaminathan, M.

Photophysical and photoprototropic characteristics of phenothiazine in aqueous and β-cyclodextrin media

Decay analysis, Job's continuous variation method, Inclusion complex

Bone critical defect repair with poloxamine–cyclodextrin supramolecular gels

Rat calvaria, Improved bone repair, Simvastatin, BMP-2, α-Cyclodextrin, Syringeability

International Journal of Pharmaceutics, 2015, 494, 408-416; DOI:10.1016/j.ijpharm.2015.08.062

Rub, M. A.; Azum, N.; Kumar, D.; Khan, F.; Asiri, A. M.

Clouding phenomenon of amphiphilic drug promazine hydrochloride solutions: Influence of pharmaceutical excipients

Cyclodextrin, Cloud point, Hydrotropes, Bile salts, Fatty acid salts

Journal of Industrial and Engineering Chemistry, 2015, 21, 1119-1126; DOI:10.1016/j.jiec.2014.05.023

Rudrangi, S. R. S.; Trivedi, V.; Mitchell, J. C.; Wicks, S. R.; Alexander, B. D.

Preparation of olanzapine and methyl-β-cyclodextrin complexes using a single-step, organic solvent–free supercritical fluid process: An approach to enhance the solubility and dissolution properties

Co-evaporation, Freeze drying, Amorphisation

International Journal of Pharmaceutics, 2015, 494, 408-416; DOI:10.1016/j.ijpharm.2015.08.062

Sakiyama, Y.; Shibata, S.; Sanayama, H.; Ono, S.; Maekawa, M.; Matsuo, M.; Irie, T.; Eto, Y.

Intrathecal 2-hydroxypropyl-geta-cyclodextrin (HPβCD) therapy in adult-onset
4. CDs in Cell Biology

Alawin, O. A.; Ahmed, R. A.; Ibrahim, B. A.; Briski, K. P.; Sylvester, P. W.
Antiproliferative effects of γ-tocotrienol are associated with lipid raft disruption in HER2-positive human breast cancer cells

Hydroxypropyl-β-cyclodextrin, Lipid raft integrity, Combined treatment, Cytotoxicity

Chauvet, S.; Barras, A.; Boukherroub, R.; Bouron, A.
Lipid nanocapsules containing the non-ionic surfactant Solutol HS15 inhibit the transport of calcium through hyperforin-activated channels in neuronal cells

Depleting cholesterol with methyl-β-cyclodextrin, Store-operated channels

Neuropharmacology, 2015, 99, 726-734; DOI:10.1016/j.neuropharm.2015.08.043

Scaffolded multimers of hIAPP20–29 peptide fragments fibrillate faster and lead to different fibrils compared to the free hIAPP20–29 peptide fragment

Cyclotriphosphazene and cyclodextrin as templates, Fibril-forming core of human islet amyloid polypeptide

Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2015, 1854, 1890-1897; DOI:10.1016/j.bbapap.2015.08.005

Crichton, E. G.; Pukazhenthi, B. S.; Billah, M.; Skidmore, J. A.
Cholesterol addition aids the cryopreservation of dromedary camel (Camelus dromedarius) spermatozoa

Cholestrol-loaded cyclodextrin, Sperm motility, Acrosomal integrity, Capacitation

Theriogenology, 2015, 83, 168-174; DOI:10.1016/j.theriogenology.2014.09.005

Interaction of fluorescent phospholipids with cyclodextrins

Methylated α-, β- and γ-cyclodextrins, Fluorescence moiety, NBD, BODIPY, Interaction
between the fluorescence group and the cyclodextrin, Membrane structure, Membrane dynamics

Chemistry and Physics of Lipids, 2015, In Press; DOI:10.1016/j.chemphyslip.2015.07.017

Ferrari, L. F.; Levine, J. D.

Plasma membrane mechanisms in a preclinical rat model of chronic pain

Lipid rafts, Methyl-β-cyclodextrin, Extracellular matrix, Versican, Integrin β1, Hyperalgesic priming, Nociceptor

The Journal of Pain, 2015, 16, 60-66; DOI:10.1016/j.jpain.2014.10.007

The cytotoxicity of the α1-adrenoceptor antagonist prazosin is linked to an endocytotic mechanism equivalent to transport-P

Apoptosis, Methyl-β-cyclodextrin, Cholesterol chelator, Lysosomes

Toxicology, 2015, 338, 17-29; DOI:10.1016/j.tox.2015.09.008

García-González, L.; Yépez-Mulia, L.; Ganem, A.

Effect of β-cyclodextrin on the internalization of nanoparticles into intestine epithelial cells

Interaction with mucin, PLGA, Caco-2 cells

European Journal of Pharmaceutical Sciences, 2016, 81, 113-118; DOI:10.1016/j.ejps.2015.10.012

Gleizes, C.; Constantinescu, A. A.; Abbas, M.; Yver, B.; Toti, F.; Kessler, L.

P171 effet du liraglutide sur le remodelage membranaire de la cellule β et l’activité procoagulante du facteur tissulaire, dans un modèle in vitro de stress inflammatoire

Inflammation, Cytokines, Insulin secretion, Methyl-β-cyclodextrin

Diabetes & Metabolism, 2015, 41, Supplement 1, A76; DOI:10.1016/S1262-3636(15)30284-6

Gu, W.-X.; Yang, Y.-W.; Wen, J.-J.; Gao, H.

Construction of reverse vesicles based on cyclodextrin–cholesterol inclusion complexation

Journal of Controlled Release, 2015, 213, e115; DOI:10.1016/j.jconrel.2015.05.193

Holt, W.; Valle, I. D.; Fazeli, A.

Heat shock protein A8 stabilizes the bull sperm plasma membrane during cryopreservation: Effects of breed, protein concentration, and mode of use

Combination with cholesterol-loaded cyclodextrin

Theriogenology, 2015, 84, 693-701; DOI:10.1016/j.theriogenology.2015.05.004

Ikonen, E.; Blom, T.

Lipoprotein-mediated delivery of BODIPY-labeled sterol and sphingolipid analogs reveals lipid transport mechanisms in mammalian cells

Endocytic uptake, Controlling plasma cholesterol levels, Lysosomal lipid storage diseases

Chemistry and Physics of Lipids, 2015, In Press; DOI:10.1016/j.chemphyslip.2015.08.013

β-Series gangliosides crucially regulate leptin secretion in adipose tissues

Methyl-β-cyclodextrin treatment, Lipid raft

Biochemical and Biophysical Research Communications, 2015, 459, 189-195; DOI:10.1016/j.bbrc.2015.01.143

Lebrón, J.; Ostos, F.; Moyá, M.; López-López, M.; Carrasco, C.; López-Cornejo, P.

Cooperative interaction between metallosurfactants, derived from the [Ru(2,2′-bpy)]^{2+} complex, and DNA

Cationic surfactants, α-Cyclodextrin, Polynucleotide decompaction, Condensation of DNA

Colloids and Surfaces B: Biointerfaces, 2015, 135, 817-824; DOI:10.1016/j.colsurfb.2015.08.052

Markelc, B.; Skvarca, E.; Dolinsek, T.; Kloboves, V. P.; Coer, A.; Sersa, G.; Cemazar, M.

Inhibitor of endocytosis Impairs gene electrotransfer to mouse muscle in vivo

Inhibitors of endocytosis, Methyl-β-cyclodextrin, Concanavalin A, Mice, Electropermeabilization, Plasmid DNA

Bioelectrochemistry, 2015, 103, 111-119; DOI:10.1016/j.bioelechem.2014.08.020

Martín, V. I.; Sarrión, B.; López-López, M.; López-Cornejo, P.; Robina, I.; Moyá, M. L.

Reversibility of the interactions between a novel surfactant derived from lysine and biomolecules

Refolding of bovine serum albumin, Decompaction of calf thymus DNA, β-Cyclodextrin

Colloids and Surfaces B: Biointerfaces, 2015, 135, 346-356; DOI:10.1016/j.colsurfb.2015.07.076

Pratelli, A.; Colao, V.

Critical role of the lipid rafts in caprine herpesvirus type 1 infection in vitro

Cholesterol depletion by methyl-β-cyclodextrin, Reduction in virus infectivity

Virus Research, 2016, 211, 186-193; DOI:10.1016/j.virusres.2015.10.013

Réti-Nagy, K.; Malanga, M.; Fenyvesi, É.; Szente, L.; Vámosi, G.; Váradi, J.; Bácskay, I.; Fehér, P.; Ujhelyi, Z.; Róka, E.; Vecsényés, M.; Balogh, G.; Vaszári, G.; Fenyvesi, F.

Endocytosis of fluorescent cyclodextrins by intestinal Caco-2 cells and its role in paclitaxel drug delivery

Cellular uptake, Cytoplasm, Rhodamine-labeled random methyl-β-cyclodextrin

Sághy, É.; Szőke, É.; Payrits, M.; Helyes, Z.; Börzsei, R.; Erostyák, J.; Jánosi, T. Z.; Jr, G. S.; Szolcsányi, J.

Evidence for the role of lipid rafts and sphingomyelin in Ca^{2+}-gating of transient receptor potential channels in trigeminal sensory neurons and peripheral nerve terminals

Cholesterol depletion with methyl-β-cyclodextrin

Pharmacological Research, 2015, 100, 101-116; DOI:10.1016/j.phrs.2015.07.028
5. CDs in Food, Cosmetics and Agrochemicals

Abarca, R. L.; Rodríguez, F. J.; Guarda, A.; Galotto, M. J.; Bruna, J. E.

Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component

Antimicrobial active packing materials, 2-Nonanone, Fungistatic behavior

Food Chemistry, 2016, 196, 968–975; DOI:10.1016/j.foodchem.2015.10.023

Almagro, L.; Belchí-Navarro, S.; Martínez-Márquez, A.; Bru, R.; Pedreño, M. A.

Enhanced extracellular production of trans-resveratrol in *Vitis vinifera* suspension cultured cells by using cyclodextrins and coronatine

Synergistic effect between both elicitors, Gene expression

Plant Physiology and Biochemistry, 2015, 97, 361-367; DOI:10.1016/j.plaphy.2015.10.025

Barba, C.; Eguinoa, A.; Maté, J. I.

Preparation and characterization of β-cyclodextrin inclusion complexes as a tool of a controlled antimicrobial release in whey protein edible films

Control release of eugenol and carvacrol

LWT - Food Science and Technology, 2015, 64, 1362-1369; DOI:10.1016/j.lwt.2015.07.060

Böttcher, S.; Steinhäuser, U.; Drusch, S.

Off-flavour masking of secondary lipid oxidation products by pea dextrin

Sensory evaluation, Gas chromatography, Emulsions rich in ω-3 and ω-6-fatty acids, Maltodextrin, 2-Hydroxypropyl-β-cyclodextrin

Food Chemistry, 2015, 169, 492-498; DOI:10.1016/j.foodchem.2014.05.006

Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in β-cyclodextrin on their interactions with whey, egg white and soy protein isolates

β-Cyclodextrin, Protein–polyphenol interactions, Liquid chromatography–tandem mass spectrometry, Molecular modelling

Food Chemistry, 2015, 168, 276-287; DOI:10.1016/j.foodchem.2014.07.056

Interactions of free and encapsulated hydroxycinnamic acids from green coffee with egg ovalbumin, whey and soy protein hydrolysates

Chlorogenic acids, β-Cyclodextrin, Peptide-ligand interactions, Molecular modelling

LWT - Food Science and Technology, 2016, 65, 823-831; DOI:10.1016/j.lwt.2015.09.001

Cheong, A. M.; Tan, K. W.; Tan, C. P.; Nyam, K. L.

Kenaf (Hibiscus cannabinus L.) seed oil-in-water Pickering nanoemulsions stabilised
by mixture of sodium caseinate, Tween 20 and β-cyclodextrin

Emulsifier mixtures, Synergistic effect

Food Hydrocolloids, 2016, 52, 934-941; DOI:10.1016/j.foodhyd.2015.09.005

Gong, L.; Li, T.; Chen, F.; Duan, X.; Yuan, Y.; Zhang, D.; Jiang, Y.

An inclusion complex of eugenol into β-cyclodextrin: Preparation, and physicochemical and antifungal characterization

Antifungal activity, Decay index of treated fresh litchi fruits, Controlled-release agent, Peronophythora litchii

Food Chemistry, 2016, 196, 324-330; DOI:10.1016/j.foodchem.2015.09.052

González, A.; Igarzabal, C. I. A.

Nanocrystal-reinforced soy protein films and their application as active packaging

β-Cyclodextrin, Sequester cholesterol when brought into contact with cholesterol rich food such as milk

Food Hydrocolloids, 2015, 43, 777-784; DOI:10.1016/j.foodhyd.2014.08.008

Incorporation of hydroxypropyl-β-cyclodextrins into chitosan films to tailor loading capacity for active aroma compound carvacrol

Plasticization of the film by glycerol and water, Carvacrol sorption, Antimicrobial activity

Food Hydrocolloids, 2015, 43, 603-611; DOI:10.1016/j.foodhyd.2014.07.017

Junnila, A.; Revay, E. E.; Müller, G. C.; Kravchenko, V.; Qualls, W. A.; de Xue, R.; Allen, S. A.; Beier, J. C.; Schlein, Y.

Efficacy of attractive toxic sugar baits (ATSB) against Aedes albopictus with garlic oil encapsulated in beta-cyclodextrin as the active ingredient

Mosquito population, Effective pesticide

Acta Tropica, 2015, 152, 195-200; DOI:10.1016/j.actatropica.2015.09.006

Kfoury, M.; Sahraoui, A. L.-H.; Bourdon, N.; Laruelle, F.; Fontaine, J.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S.

Solubility, photostability and antifungal activity of phenylpropanoids encapsulated in cyclodextrins

Phytopathogenic fungi, Fusarium oxysporum, Botrytis cinerea

Food Chemistry, 2016, 196, 518-525; DOI:10.1016/j.foodchem.2015.09.078

Laokuldilok, N.; Thakeow, P.; Kopermsub, P.; ang null, N. U.

Optimisation of microencapsulation of turmeric extract for masking flavour

Odor masking, β-CD, Ar-turmerone, 2-Methyl-4-vinylguaiacol, Nutrient supplement, HPLC, Headspace GC–MS

Food Chemistry, 2016, 194, 695-704; DOI:10.1016/j.foodchem.2015.07.150

Liu, M.; Zheng, Y.; Wang, C.; Xie, J.; Wang, B.; Wang, Z.; Han, J.; Sun, D.; Niu, M.
Improved stability of (+)-catechin and (−)-epicatechin by complexing with hydroxypropyl-β-cyclodextrin: Effect of pH, temperature and configuration

Polyphenols with health benefit, Isothermal titration calorimetry, Fluorescence spectroscopy

Santos, E. H.; Kamimura, J. A.; Hill, L. E.; Gomes, C. L.

Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications

Kneading, Freeze drying, Trolox Equivalent Antioxidant Capacity, Applications in food systems, Natural antimicrobial, Storage stability, Antimicrobial activity

LWT - Food Science and Technology, 2015, 60, 583-592; DOI:10.1016/j.lwt.2014.08.046

6. CDs for other Industrial Applications

Byun, Y.; Rodriguez, K.; Han, J. H.; Kim, Y. T.

Improved thermal stability of polylactic acid (PLA) composite film via PLA–β-cyclodextrin-inclusion complex systems

Incorporation of PLA–β-cyclodextrin-inclusion complex and β-cyclodextrin, Oxygen and water vapor permeability

International Journal of Biological Macromolecules, 2015, 81, 591-598; DOI:10.1016/j.ijbiomac.2015.08.036

Celebioglu, A.; Sen, H. S.; Durgun, E.; Uyar, T.

Molecular entrapment of volatile organic compounds (VOCs) by electrospun cyclodextrin nanofibers

Hydroxypropyl-β-cyclodextrin, Hydroxypropyl-γ-cyclodextrin, Aniline, Benzene, Surface area, Air filtration

Chemosphere, 2016, 144, 736-744; DOI:10.1016/j.chemosphere.2015.09.029

Corrêa, J. M.; Abrishamkar, A.; Silva, J. G. D.; Pereira, J. R.; de Oliveira, F. C.; Denadai, Â. M.

Modulation of size and viscosity of Ni/Zn ferrites: Effect of doping with βCD and chemical treatment with HNO₃ and NaOH

Newtonian profile, Pseudoplastic, Thixotropic

Journal of Molecular Structure, 2015, 1100, 438-446; DOI:10.1016/j.molstruc.2015.07.060

Elard, M.; Denis, J.; Ferreira, M.; Bricout, H.; Landy, D.; Tilloy, S.; Monflier, E.

Rhodium catalyzed hydroformylation assisted by cyclodextrins in biphasic medium: Can sulfonated naphthylphosphphanes lead to active, selective and recyclable catalytic species?

Randomly methylated β-cyclodextrins

Catalysis Today, 2015, 247, 47-54; DOI:10.1016/j.cattod.2014.06.002

Efficient synthesis of 1,8-dioxo-octahydroxanthenes catalyzed by β-cyclodextrin grafted with butyl sulfonic acid in aqueous media

One-pot condensation of aromatic aldehydes and active methylene carbonyl compounds in aqueous media, Eco-friendly catalyst

Chinese Journal of Catalysis, 2015, 36, 1249-1255; DOI:10.1016/S1872-2067(15)60888-9

Secondary structural changes in guanidinium hydrochloride denatured mammalian serum albumins and protective effect of small amounts of cationic Gemini surfactant pentanediyl-α,ω-bis(cetyldimethylammonium bromide) and methyl-β-cyclodextrin: A spectroscopic study

Methyl-β-cyclodextrin in the artificial chaperone, Circular dichroism, Dynamic light scattering

Adsorption of copper by magnetic graphene oxide-supported β-cyclodextrin: Effects of pH, ionic strength, background electrolytes, and citric acid

Adsorption method for heavy metal removal from wastewater, Freundlich and Temkin isotherm models, Influence mechanism

Chemical Engineering Research and Design, 2015, 93, 675-683; DOI:10.1016/j.cherd.2014.06.002

Kubli, M. R.; Yatsimirsky, A. K.

Phosphodiester cleavage by trivalent lanthanides in the presence of native cyclodextrins

Lanthanide-β-CD complexes, Hydrolysis, Kinetics, Catalysis

Kuklin, S.; Maximov, A.; Zolotukhina, A.; Karakhanov, E.

New approach for highly selective hydrogenation of phenol to cyclohexanone: Combination of rhodium nanoparticles and cyclodextrins

Ionic liquid

Catalysis Communications, 2016, 73, 63-68; DOI:10.1016/j.catcom.2015.10.005

Lannoy, A.; Kania, N.; Bleta, R.; Fourmentin, S.; Machut-Binkowski, C.; Monflier, E.; Ponchel, A.

Photocatalysis of volatile organic compounds in water: Towards a deeper understanding of the role of cyclodextrins in the photodegradation of toluene over titanium dioxide

Titanium dioxide photocatalyst, α-CD, β-CD, γ-CD, RAME-β-CD, Cyclodextrin stability during the degradation process, Balance between solubilization efficiency, substrate protection and coverage of active sites of TiO_2 by competitive adsorption

Li, L.; Tian, C.; Yang, J.; Zhang, X.; Chen, J.

One-pot synthesis of PtRh/β-CD-CNTs for methanol oxidation

β-CD functionalized carbon nanotubes, *Electrocatalysts*

Liu, Y.; Zou, C.; Li, C.; Lin, L.; Chen, W.

Evaluation of β-cyclodextrin–polyethylene glycol as green scale inhibitors for produced-water in shale gas well

Prevent the buildup of calcium carbonate for the oilfield flow back water, Environmentally friendly, Water treatment

Desalination, 2016, 377, 28-33; DOI:10.1016/j.desal.2015.09.007

Maneechakr, P.; Samerjit, J.; Uppakarnrod, S.; Karnjanakom, S.

Experimental design and kinetic study of ultrasonic assisted transesterification of waste cooking oil over sulfonated carbon catalyst derived from cyclodextrin

Biodiesel production from waste cooking oil

Journal of Industrial and Engineering Chemistry, 2015, 32, 128-136; DOI:10.1016/j.jiec.2015.08.008

Mokashe, N.; Chaudhari, A.; Patil, U.

Optimal production and characterization of alkaline protease from newly isolated halotolerant Jeotgalicoccus sp

Metalloprotease, Rhamnolipid, Cyclodextrin, Purification

Biocatalysis and Agricultural Biotechnology, 2015, 4, 235-243; DOI:10.1016/j.bcab.2015.01.003

Moulahcene, L.; Skiba, M.; Senhadji, O.; Milon, N.; Benamor, M.; Lahiani-Skiba, M.

Inclusion and removal of pharmaceutical residues from aqueous solution using water-insoluble cyclodextrin polymers

Crosslinked with citric acid, Progesterone, Endocrine disruptor, Adsorption

Chemical Engineering Research and Design, 2015, 97, 145-158; DOI:10.1016/j.cherd.2014.08.023

Pantò, S.; Sciaronne, D.; Maimone, M.; Ragonese, C.; Giofrè, S.; Donato, P.; Farnetti, S.; Mondello, L.

Performance evaluation of a versatile multidimensional chromatographic preparative system based on three-dimensional gas chromatography and liquid chromatography–two-dimensional gas chromatography for the collection of volatile constituents

Sesquiterpene alcohols, (Z)-α-santalol, (Z)-α-trans bergamotol, (Z)-β-santalol, epi-(Z)-β-santalol, α-bisabolol, (Z)-lanceol, (Z)-nuciferol, β-Cyclodextrin based GC stationary phases, Preparative GC, Sandalwood

Journal of Chromatography A, 2015, 1417, 96-103; DOI:10.1016/j.chroma.2015.09.039

Qin, Y.; Zou, C.; Yan, X.; Zhou, L.; Luo, P.

High performance acid composition based on cationic β-cyclodextrin inclusion
complexes for enhancing oil recovery

2-Phosphonobutane-1,2,4-tricarboxylic acid, Inhibit clay swelling, Acid stimulation

Chemical Engineering Research and Design, 2015, 94, 301-306; DOI:10.1016/j.cherd.2014.07.031

Russo, M.; Armetta, F.; Riela, S.; Martino, D. C.; Meo, P. L.; Noto, R.

Silver nanoparticles stabilized by a polyaminocyclodextrin as catalysts for the reduction of nitroaromatic compounds

Poly-(6-N,N-dimethyl-propylenediamino)-(6-deoxy)-β-cyclodextrin, Metal core surrounded by a layer-structured coating shell, Modified Langmuir–Hinshelwood model

Journal of Molecular Catalysis A: Chemical, 2015, 408, 250-261; DOI:10.1016/j.molcata.2015.07.031

Fast adsorption of p-nitrophenol from aqueous solution using β-cyclodextrin grafted silica gel

(3-Chloropropyl)trimethoxysilane and ethylenediamine as linking groups, Freundlich model

Applied Surface Science, 2015, 356, 1155-1167; DOI:10.1016/j.apsusc.2015.08.203

7. CDs in Sensing and Analysis

Agnihotri, N.; Chowdhury, A. D.; De, A.

Non-enzymatic electrochemical detection of cholesterol using β-cyclodextrin functionalized graphene

Methylene blue as redox indicator, Inclusion complex, Differential Pulse Voltammetry

Biosensors and Bioelectronics, 2015, 63, 212-217; DOI:10.1016/j.bios.2014.07.037

Cheng, L.; Zhang, J.; Lin, Y.; Wang, Q.; Zhang, X.; Ding, Y.; Cui, H.; Fan, H.

An electrochemical molecular recognition-based aptasensor for multiple protein detection

Thrombin, Lysozyme, Dabcyl-labeled aptamer modified metal nanoparticles, β-Cyclodextrin modified electrode

Analytical Biochemistry, 2015, 491, 31-36; DOI:10.1016/j.ab.2015.08.023

Deshmukh, K.; Tanwar, Y. S.; Shende, P.; Cavalli, R.

Biomimetic estimation of glucose using non-molecular and molecular imprinted polymer nanosponges

Pyromellitic dianhydride crosslinked β-cyclodextrin based nanosponges, Association of glucose phosphate to nanosponges

International Journal of Pharmaceutics, 2015, 494, 244-248; DOI:10.1016/j.ijpharm.2015.08.022
Do, V. H.; Tran, P. L.; Ni, L.; Park, K. H.
A continuous coupled spectrophotometric assay for debranching enzyme activity using reducing end-specific α-glucosidase

Maltodextrin-branched β-cyclodextrin as the substrate, Glucose oxidase/peroxidase (GOPOD)

Analytical Biochemistry, 2016, 492, 21-26; DOI:10.1016/j.ab.2015.09.008

Durán, G. M.; Contento, A. M.; Ríos, Á.
β-Cyclodextrin coated CdSe/ZnS quantum dots for vanillin sensing in food samples

Quenching of the original fluorescence

Talanta, 2015, 131, 286-291; DOI:10.1016/j.talanta.2014.07.100

Fox, S.; Strasdeit, H.; Haasmann, S.; Brückner, H.
Gas chromatographic separation of stereoisomers of non-protein amino acids on modified γ-cyclodextrin stationary phase

Octakis(3-O-butyryl-2,6-di-O-pentyl)-γ-cyclodextrin, α-, β-, and γ-Amino acids, α,α-Dialkyl amino acids

Journal of Chromatography A, 2015, 1411, 101-109; DOI:10.1016/j.chroma.2015.07.082

Fritea, L.; Goff, A. L.; Putaux, J.-L.; Tertis, M.; Cristea, C.; Sândulescu, R.; Cosnier, S.
Design of a reduced-graphene-oxide composite electrode from an electropolymerizable graphene aqueous dispersion using a cyclodextrin-pyrrole monomer. Application to dopamine biosensing

Cyclodextrin-modified pyrrole monomer, Tyrosinase, Catechol, β-Cyclodextrin

Gao, J.; Guo, Z.; Su, F.; Gao, L.; Pang, X.; Cao, W.; Du, B.; Wei, Q.
Ultrasensitive electrochemical immunoassay for CEA through host–guest interaction of β-cyclodextrin functionalized graphene and Cu@Ag core–shell nanoparticles with adamantamine-modified antibody

β-cyclodextrin functionalized graphene nanosheet, Adamantine-modified primary antibodies, Immunosensor

Biosensors and Bioelectronics, 2015, 63, 465-471; DOI:10.1016/j.bios.2014.07.081

Gao, J.; Ma, H.; Lv, X.; Yan, T.; Li, N.; Cao, W.; Wei, Q.
A novel electrochemical immunosensor using β-cyclodextrins functionalized silver supported adamantamine-modified glucose oxidase as labels for ultrasensitive detection of alpha-fetoprotein

Ferrocenecarboxylic acid, Convert glucose into gluconic acid with the formation of hydrogen peroxide, Functionalized multiwalled carbon nanotubes, Dual amplification, Host-guest interaction

Analytica Chimica Acta, 2015, 893, 49-56; DOI:10.1016/j.aca.2015.08.052

Ghanem, A.; Ahmed, M.; Ishii, H.; Ikegami, T.
Immobilized β-cyclodextrin-based silica vs polymer monoliths for chiral nano liquid chromatographic separation of racemates

Edited and produced by: CYCLOLAB – page: 30
2,3,6-Tris(phenylcarbamoyl)-β-cyclodextrin-6-methacrylate, Reversed phase chromatography

Talanta, 2015, 132, 301-314; DOI:10.1016/j.talanta.2014.09.006

Investigation of the kinetic process of solid phase microextraction in complex sample

Arrhenius equation, Solid phase microextraction desorption method, Hydroxypropyl-β-cyclodextrin

Analytica Chimica Acta, 2015, 900, 111-116; DOI:10.1016/j.aca.2015.09.010

Li, J.; Wang, X.; Duan, H.; Wang, Y.; Bu, Y.; Luo, C.
Based on magnetic graphene oxide highly sensitive and selective imprinted sensor for determination of sunset yellow

β-Cyclodextrin/ionic liquid/gold nanoparticles functionalized magnetic graphene oxide, Fast rebinding dynamics

Talanta, 2016, 147, 169-176; DOI:10.1016/j.talanta.2015.09.056

Li, L.; Lurie, I. S.
Regioisomeric and enantiomeric analyses of 24 designer cathinones and phenethylamines using ultra high performance liquid chromatography and capillary electrophoresis with added cyclodextrins

Dynamically coated capillary, HP-β-CD in the run buffer

Li, N.; Ma, H.; Cao, W.; Wu, D.; Yan, T.; Du, B.; Wei, Q.
Highly sensitive electrochemical immunosensor for the detection of alpha fetoprotein based on PdNi nanoparticles and N-doped graphene nanoribbons

β-Cycloextrinsics functionalized graphene sheets, Immobilizing adamantane-1-carboxylic acid functionalized primary anti-AFP, Sandwich-type electrochemical immunosensor

Biosensors and Bioelectronics, 2015, 74, 786-791; DOI:10.1016/j.bios.2015.07.049

Liu, C.; Wang, P.; Shen, Z.; Liu, X.; Zhou, Z.; Liu, D.
pH-Controlled quaternary ammonium herbicides capture/release by carboxymethyl-β-cyclodextrin functionalized magnetic adsorbents: Mechanisms and application

Paraquat/diquat, Host-guest chemistry, Magnetic solid phase extraction, Green analytical chemistry

Analytica Chimica Acta, 2015, 901, 51-58; DOI:10.1016/j.aca.2015.10.027

Miękus, N.; Kowalski, P.; Ołędzka, I.; Plenis, A.; Bień, E.; Miękus, A.; Krawczyk, M.; Adamkiewicz-Drożyńska, E.; Bączek, T.
Cyclodextrin-modified MEKC method for quantification of selected acidic metabolites of catecholamines in the presence of various biogenic amines. Application to diagnosis of neuroblastoma

Noradrenalin, adrenalin, dopamine and their main metabolites – homovanillic acid (HVA), vanillylmandelic acid (VMA), 3,4-dihydroxyphenylacetic acid (DOPAC), α-Cyclodextrin, Micellar electrokinetic chromatography technique, Urine sample pre-treatment

Journal of Chromatography B, 2015, 1003, 27-34; DOI:10.1016/j.jchromb.2015.09.003
Müllerová, L.; Dubský, P.; Gaš, B.

Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: Part II. Application to dual systems and experimental verification

Native β-cyclodextrin, 6-Monodeoxy-6-monoamino-β-cyclodextrin, Dual-selector system, Partly dissociated analyte

Journal of Chromatography A, 2015, 1384, 147-154; DOI:10.1016/j.chroma.2015.01.055

Munir, S.; Park, S.-Y.

The development of a cholesterol biosensor using a liquid crystal/aqueous interface in a SDS-included β-cyclodextrin aqueous solution

Sodium dodecyl sulphate, Replacement of SDS with cholesterol

Analytica Chimica Acta, 2015, 893, 101-107; DOI:10.1016/j.aca.2015.08.051

Ou, J.; Zhu, Y.; Kong, Y.; Ma, J.

Graphene quantum dots/β-cyclodextrin nanocomposites: A novel electrochemical chiral interface for tryptophan isomer recognition

Glassy carbon electrode, Electrochemical chiral interface

Electrochemistry Communications, 2015, 60, 60-63; DOI:10.1016/j.elecom.2015.08.005

Preparation of β-cyclodextrin entrapped graphite composite for sensitive detection of dopamine

Screen-printed carbon electrode (SPCE) modified with β-cyclodextrin entrapped graphite

Carbohydrate Polymers, 2016, 135, 267-273; DOI:10.1016/j.carbpol.2015.09.008

Pragadheesh, V.; Yadav, A.; Chanotiya, C. S.

Role of substituents in cyclodextrin derivatives for enantioselective gas chromatographic separation of chiral terpenoids in the essential oils of Mentha spicata

2,3-Diethyl-6-tert-butyldimethylsilyl-β-cyclodextrin, 2,3-Diacetoxy-6-tert-butyldimethylsilyl-β-cyclodextrin, (R)-(−)-carvone, (S)-(−)-limonene

Journal of Chromatography B, 2015, 1002, 30-41; DOI:10.1016/j.jchromb.2015.07.034

Ran, X.; Yang, L.; Zhang, J.; Deng, G.; Li, Y.; Xie, X.; Zhao, H.; Li, C.-P.

Highly sensitive electrochemical sensor based on β-cyclodextrin–gold@3, 4, 9, 10-perylene tetracarboxylic acid functionalized single-walled carbon nanohorns for simultaneous determination of myricetin and rutin

Nanohybrids, Glassy carbon electrode, Supramolecular host–guest recognition, Thiol-β-cyclodextrin

Analytica Chimica Acta, 2015, 892, 85-94; DOI:10.1016/j.aca.2015.08.046