Sulfobutylether Beta-Cyclodextrin as Chiral Selector in Capillary Electrophoresis

Cyclodextrins (CDs) are the most frequently used chiral selectors in the capillary electrophoresis [1]. For academic research usually single isomer CDs are used, but for practical purposes the random substituted CDs give often suitable results especially when CD derivatives produced industrially are used. Sulfobutylether beta-CD (SBE-β-CD) is a pharmaceutical excipient in US Pharmacopoeia as solubilizing agent [2] and is a component of several drug formulations in the market. Its composition is strictly regulated therefore the average degree of substitution (DS) and the distribution of the components of various DS fall always in a narrow range. The standard quality results in high reproducibility for analytical applications.

The first report on the application of SBE-β-CD in capillary electrophoresis (CE) was published in 1994 by the group of Valentino Stella [3]. In this pioneering work, the authors demonstrated that enhanced enantiomeric separation can be achieved when the electrophoretic mobility of the chiral selector is opposite to that of the analyte. The “extended” enantiorecognition ability of SBE-CDs, based on the advantage of the countercurrent flow of the negatively charged additive with respect to the electroosmotic flow (EOF), was then further deepened by other scientists. Along the years, the family of sulfobutylated CDs gained popularity and SBE-β-CD is often referred as the most versatile chiral additive among the negatively charged CDs (and CDs in general) as it allows the enantioseparation of a wide variety of pharmacologically active racemates.

The use of SBE-CDs in CE is suitable for the analysis of illicit amphetamine, methamphetamine, methcathinone and propoxyphene [4] and for the enantiomeric separation of ephedrine and related compounds [5]. Chankvetadze et al. described the use of SBE-β-CD as a chiral additive for the resolution of basic racemic drugs, such as clenbuterol, dimethindene, etilefrine, mefloquine and metomidate, in free capillary zone electrophoresis.
The resolution of the racemates was achieved with very low concentrations (micromolar) of the chiral additive and the high efficiency of the selector was attributed to its counter-current mobility in respect to the racemic solute [6].

Also Desiderio and Fanali reported on the effective use of SBE-β-CD as a chiral selector in CE in a study on the enantiomeric separation of warfarin, pindolol, propranolol, terbutaline, etc., a variety of underivatized anionic and cationic compounds of pharmaceutical interest as well as dansyl-amino acids [7].

SBE-β-CD was found as best chiral selector for the enantiomeric separation of several neutral and anionic herbicides by capillary zone electrophoresis [7]. SBE-γ-CD has been also investigated as chiral selector for CE. A comparative study between SBE-γ-CD and native γ-CD has shown that SBE-γ-CD is more efficient in the electrophoretic separation of cationic analytes, but it cannot generally replace γ-CD since the enantioselectivities of the two selectors are sometimes distinctly different [8]. Electrophoretic chiral separation of chloroquine and pemoline was effectively achieved by using 2.5 mM SBE-β-CD and 1.0 mM SBE-β-CD in 50 mM pH 2.5 sodium phosphate buffer, respectively [9]. Fundamental drugs used for the clinical treatment of Parkinson's disease, such as DOPA and structurally related compounds were resolved into their enantiomers by CE with SBE-β-CD as chiral selector [10–11]. The use of SBE-β-CD as chiral additive in CE was also useful for the separation of estrogens and amino acid derivatives [12–14]. The enantioseparations of the antimalarian erythro-mefloquine and its analogues were screened by CE using library of CD derivatives, including SBE-β-CD, as chiral selectors [15].

The chiral separation of the dihydropyridine calcium channel blockers (DHPs) with CE has been reported utilizing SBE-β-CD as the chiral selectors: it was found that the anionic SBE-β-CD gives a robust separation of amlodipine enantiomers when using acetonitrile - 20 mM NaH₂PO₄ (pH 3.95), containing 20 mM SBE-β-CD (35:100, v/v) [16]. Kong et al. developed an electrophoretic method for the enantioseparation of neutral m-nisoldipine, by comparing SBE-β-CD and carboxymethyl-β-CD (CM-β-CD) as chiral selectors. It was concluded that SBE-β-CD was superior chiral selector than CM-β-CD. It was also pointed out that the DS of the SBE-β-CD can remarkably influence the enantiorecognition process. In particular, high DS SBE-β-CD induced better investigated by CD-mediated CE and it was found that the enantiomers of the neutral dihydropyridines were baseline-separated only with SBE-β-CD [18].

Fillet et al. performed comparative chiral resolution studies among the commonly used neutral CDs with SBE-β-CD. Increased enantiomeric resolution for various acidic drugs was achieved by using dual systems comprising neutral β-CD and charged SBE-β-CD [19].

The extensive work on the use of anionic CDs in chiral CE have been summarized in excellent reviews [20–22]. De Boer et al. in their review reported several examples about the utility of sulfobutylated β- and γ-CDs as chiral selectors and the authors referred to SBE-β-CD.
as the “most widely used anionic CD derivative” [23]. In the review by Mikuš et al. [24], some new achievements in the use of SBE-CDs are reported.

Further papers on the analytical application of SBE-CDs are summarized in Table 1.

Table 1. Examples of using SBE-β-CD as chiral selector

<table>
<thead>
<tr>
<th>Analytes</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>tadalafil</td>
<td>25</td>
</tr>
<tr>
<td>sitagliptin</td>
<td>26</td>
</tr>
<tr>
<td>imperanene</td>
<td>27</td>
</tr>
<tr>
<td>R-modafinil</td>
<td>28</td>
</tr>
<tr>
<td>ofloxacin and its metabolites</td>
<td>29</td>
</tr>
<tr>
<td>volinanserin and its intermediate</td>
<td>30</td>
</tr>
<tr>
<td>methylarginines</td>
<td>31</td>
</tr>
<tr>
<td>polycyclic aromatic hydrocarbons</td>
<td>32-34</td>
</tr>
<tr>
<td>bupivacaine hydrochloride enantiomers</td>
<td>35</td>
</tr>
<tr>
<td>isradipine enantiomers</td>
<td>36</td>
</tr>
<tr>
<td>chloroquine enantiomers</td>
<td>37</td>
</tr>
<tr>
<td>benzofurys, cathinones, diphenidines, ethylphenidate, methiopropamine and thiothione</td>
<td>38</td>
</tr>
<tr>
<td>brompheniramine, chlorpheniramine, cetirizine and promethazine racemate</td>
<td>39</td>
</tr>
<tr>
<td>pantoprazole enantiomers</td>
<td>40</td>
</tr>
<tr>
<td>retroamide enantiomers</td>
<td>41</td>
</tr>
<tr>
<td>alogliptin enantiomers</td>
<td>42, 43</td>
</tr>
<tr>
<td>trans-tramadol and its metabolites</td>
<td>44, 45</td>
</tr>
<tr>
<td>pyroglutamic acid derivatives</td>
<td>46</td>
</tr>
</tbody>
</table>

a SBE-α-CD, b SBE-β-CD (average DS ~4), c SBE-γ-CD (DS ~4), d SBE-β-CD and native β-CD dual CD system, e electrokinetic chromatography (EKC)

The versatility of SBE-CDs as capillary electrophoretic tools, together with their commercial availability largely justify the extensive research conducted so far on this family of derivatives. The large number and wide structural variety of guest molecules where efficient chiral resolution was achieved demonstrate not only the excellent enantiorecognition but also the general and high affinity complex forming ability of these cyclodextrin derivatives.
References

9. Y. Dong, A. Huang, Y. Sun, Z. Sun, Chiral separation of chloroquine and pemoline by capillary zone electrophoresis with sulfobutyl ether β-cyclodextrin as buffer additive, Chromatographia 48 (1998) 310-313
10. M. Dolezalová, S. Fanali, Enantiomeric separation of dihydroxyphenylalanine (DOPA), methyl(dihydroxyphenylalanine (MDOPA) and hydrazino-methyl(dihydroxyphenylalanine (CDOPA) by using capillary electrophoresis with sulfobutyl ether-β-cyclodextrin as a chiral selector, Electrophoresis 21 (2000) 3264-3269
22. W. Tang, S.-C. Ng, D. Sun (Eds.), Modified cyclodextrin for chiral separation, Springer, 2013 paragraph: 6.4 Sulfobutyl Ether-β-CD (SBE-β-CD), pp 209-216
23. T. De Boer, R. A. De Zeeuw, G. J. De Jong, K. Esing, Recent innovations in the use of charged cyclodextrins in capillary electrophoresis for chiral separations in pharmaceutical analysis,

37. S. Wongwan, G. K. E. Scriba, Development and validation of a capillary electrophoresis assay for the determination of the stereoisomeric purity of chloroquine enantiomers, Electrophoresis 32 (2011) 2669–2672

38. Taschner M, Hofer MG, Schmid MG, Enantioseparation of benzofurys and other novel psychoactive compounds by CE and sulfobutylether β-cyclodextrin as chiral selector added to the BGE, Electrophoresis 35 (2014) 2793–2799

44. S. Rudaz, S. Cherkauui, P. Dayer, S. Fanali, J. L. Veuthy, Simultaneous stereoselective analysis of tramadol and its main phase I metabolites by on-line capillary zone electrophoresis-electrospray

Milo Malanga & Éva Fenyvesi

CycloLab Cyclodextrin R&D Laboratory, Ltd.,
Budapest, HUNGARY
Bibliography & Keywords of Selected Publications of the Month

Arima, H.; Motoyama, K.; Higashi, T.
Potential Use of Cyclodextrins as Drug Carriers and Active Pharmaceutical Ingredients
Review
Chemical & pharmaceutical bulletin, 2017, 65, 341-348;

Arima, H.; Motoyama, K.; Higashi, T.
Potential therapeutic application of dendrimer/cyclodextrin conjugates with targeting ligands as advanced carriers for gene and oligonucleotide drugs
- Polyamidoamine dendrimer (G3) conjugates with α-CyD, Cell-specific drug carriers, Polyethylene glycol, galactose, lactose, mannose, fucose and folic acid-appended α-CDEs
Therapeutic Delivery, 2017, 8, 215-232; DOI:10.4155/tde-2016-0064

Shi, X.; Li, W.; Liu, H.; Yin, D.; Zhao, J.
β-Cyclodextrin induces the differentiation of resident cardiac stem cells to cardiomyocytes through autophagy
- Regeneration of damaged hearts, Increased expression of cardiac transcription factors and structural proteins, Enhanced myogenic transition, Cholesterol efflux
Biochimica et Biophysica Acta, Molecular Cell Research, 2017, 1864, 1425-1434; DOI:10.1016/j.bbamcr.2017.05.012

β-CD-Functionalized Microdevice for Rapid Capture and Release of Bacteria
- Quartz-crystal microbalance, Functionalization of surfaces by β-CD, Selectively methylated β-CD derivative as a competitive host, Capture/elution strategy, Escherichia coli
ACS Applied Materials & Interfaces, 2017, 9, 13928-13938; DOI:10.1021/acsami.7b02194

Zhai, Z.; Zhang, F.; Chen, X.; Zhong, J.; Liu, G.; Tian, Y.; Huang, Q.
Uptake of silver nanoparticles by DHA-treated cancer cells examined by surface-enhanced Raman spectroscopy in a microfluidic chip
- Cyclodextrin-coated silver nanoparticles modified with para-aminothiophenol and folic acid, Endocytosis, Targeted drug delivery, Controlled release
Lab on a Chip, 2017, 17, 1306-1313; DOI:10.1039/C7LC00053G

Sun, H-L.; Chen, Y.; Han, X.; Liu, Y.
Tunable Supramolecular Assembly and Photoswitchable Conversion of Cyclodextrin/Diphenylalanine-Based 1D and 2D Nanostructures
- Supramolecular assembly of adamantanyl-modified diphenylalanine with azobenzene-bridged bis(β-cyclodextrin), Nanosheet, Nanotube, Photo-switchable one-dimensional/two-dimensional morphological interconversion
Toward Successful Cyclodextrin Based Solubility-Enabling Formulations for Oral Delivery of Lipophilic Drugs: Solubility-Permeability Trade-Off, Biorelevant Dissolution, and the Unstirred Water Layer

Success/failure of cyclodextrin-based solubility-enabling formulations for oral delivery of low-solubility drugs, Danazol, HPβCD, Excess CD

Molecular Pharmaceutics, 2017, Ahead of Print; DOI:10.1021/acs.molpharmaceut.7b00275

The study of the pseudo-polyrotaxane architecture as a route for mild surface functionalization by click chemistry of poly(ε-caprolactone)-based electrospun fibers

Pseudo-polyrotaxanes of cyclodextrin and PCL, Core:shell fibers, Coaxial electrospinning, Grafting fluorescein isothiocyanate and bicyclononyne groups

Thermoresponsive Self-Assembled β-Cyclodextrin-Modified Surface for Blood Purification

Removal of bilirubin from the body in clinics, Detoxification system, Adamantane on gold surface, β-CD dimer, Resistance to plasma proteins, In vitro platelet adhesion assay, Hemolysis assay, Negligible cytotoxicity

ACS Biomaterials Science & Engineering, 2017, Ahead of Print; DOI:10.1021/acsbiomaterials.7b00156

Potentiating bioactivity of BMP-2 by polyelectrolyte complexation with sulfonated polyrotaxanes to induce rapid bone regeneration in a mouse calvarial defect

Sulfopropyl ether (SPE)-modified α-cyclodextrins threaded along a poly(ethylene glycol) chain

Template-directed synthesis of a cubic cyclodextrin polymer with aligned channels and enhanced drug payload

CD-cubes, metal organic frameworks, γ-CDs in MOFs crosslinked by diphenyl carbonate, Enhanced adsorption capacity for doxorubicin

RSC Advances, 2017, 7, 20789-20794; DOI:10.1039/C7RA02306E

Iron(II)porphyrin-Cyclodextrin Supramolecular Complex as a Carbon Monoxide-Depleting Agent in Living Organisms

Per-O-methylated β-cyclodextrin (TMe-β-CD), HemoCD

Synthesis of multi-lactose-appended β-cyclodextrin and its cholesterol-lowering effects in Niemann-Pick type C disease-like HepG2 cells

Active targeting hepatocytes with β-CD, Decreasing the concentration of intracellular cholesterol, Negligible cytotoxicity, Increased internalization

Canterini, S.; Dragotto, J.; Dardis, A.; Zampieri, S.; Egle De Stefano, M.; Mangia, F.; Erickson, R. P.; Fiorenza, M. T.
Shortened primary cillum length and dysregulated Sonic hedgehog signaling in Niemann-Pick C1 Disease

Dysregulation of Shh signaling, 2-Hydroxypropyl-β-cyclodextrin, Abnormal morphogenesis of the cerebellum of Npc1-deficient mice, Primary cillum

Human molecular genetics, 2017,

Pluronic based β-cyclodextrin polyrotaxanes for treatment of Niemann-Pick Type C disease

HP-β-CD pro-drug, polyrotaxanes

Scientific reports, 2017, 7, 46737

Massaro, M.; Colletti, C. G.; Lazzara, G.; Guernelli, S.; Noto, R.; Riela, S.
Synthesis and Characterization of Halloysite-Cyclodextrin Nanosponges for Enhanced Dyes Adsorption

Inorganic-organic nanosponge hybrids, Clay, Microwave irradiations in solvent-free conditions, Rhodamine B adsorption

ACS Sustainable Chemistry & Engineering, 2017, 5, 3346-3352; DOI:10.1021/acssuschemeng.6b03191

Rey-Rico, A.; Babicz, H.; Cucchiarini, M.; Madry, H.; Concheiro, A.; Alvarez-Lorenzo, C.
Supramolecular polypseudorotaxane gels for controlled delivery of rAAV vectors in human mesenchymal stem cells for regenerative medicine

Cartilage regeneration, Hyaluronic acid, Chondroitin sulfate, αCD, Improved transgene expression. Sustained release

International journal of pharmaceutics, 2017

Nakahata, M.; Takashima, Y.; Harada, A.
Supramolecular Polymeric Materials Containing Cyclodextrins

Review, Macroscopic self-assembly of polymer gels carrying host and guest residues, Stimuli-responsive self-healing properties, Macroscopic motion of artificial muscle

Letort, S.; Bosco, M.; Cornelio, B.; Bregier, F.; Gouhier, G.; Estour, F.; Daulon, S.
Structure-efficiency relationships of cyclodextrin scavengers in the hydrolytic degradation of organophosphorus compounds

Organophosphorus nerve agents, Competitive inclusion between the organophosphorus substrate and the iodosobenzoate group, Imidazole group

Gogolashvili, A.; Tatunashvili, E.; Chankvetadze, L.; Sohajda, T.; Szeman, J.; Salgado, A.; Chankvetadze, B.

Separation of enilconazole enantiomers in capillary electrophoresis with cyclodextrin-type chiral selectors and investigation of structure of selector-selectand complexes by using nuclear magnetic resonance spectroscopy

Enantiomer migration order, Heptakis(2-O-methyl-3,6-di-O-sulfo)-β-CD, Shallow external complex

Electrophoresis, 2017, Ahead of Print; DOI:10.1002/elps.201700078

Pressure inverse solubility and polymorphism of an edible γ-cyclodextrin-based metal-organic framework

Trigonal structure

Physical Chemistry Chemical Physics, 2017, 19, 9086-9091; DOI:10.1039/C7CP00593H

Martel, B.; Campagne, C.; Behary, M. N.

When textiles help your recovery

Wound dressings, Implantable devices, Advanced spinning technologies of biostable or bioresorbable polymers and surface treatment technologies, Cyclodextrins releasing the active agents in situ

Medecine sciences : M/S, 2017, 33, 73-80

Poly(carboxylic acid)-Cyclodextrin/Anionic Porphyrin Finished Fabrics as Photosensitizer Releasers for Antimicrobial Photodynamic Therapy

Polypropylene (PP) fabric finished with citrate-hydroxypropyl-βCD polymer, Photoinactivation of microorganisms, Staphylococcus aureus, Pseudomonas aeruginosa

Biomacromolecules, 2017, 18, 1134-1144; DOI:10.1021/acs.biomac.6b01752

Cheng, M.; Wang, M.; Zhang, S.; Liu, F.; Yang, Y.; Sun, L.; Wan, B.

Photocatalytic H₂ production using a hybrid assembly of an [FeFe]-hydrogenase model and CdSe quantum dot linked through a thiolato-functionalized cyclodextrin

Hydrogen evolution reaction, Hybrid assembly of a sulfonate-functionalized [FeFe]-hydrogenase mimic and CdSe quantum dot, 6-Mercapto-β-cyclodextrin asstabilizing reagent and a host compound for the diiron catalyst

Faradays discussions, 2017

Yuan, L-M.; Ma, W.; Xu, M.; Zhao, H-L.; Li, Y-Y.; Wang, R-L.; Duan, A-H.; Ai, P.; Chen, X-X.

Optical resolution and mechanism using enantioselective cellulose, sodium alginate and hydroxypropyl-β-cyclodextrin membranes

p-Hydroxy phenylglycine, Chiral separation, Adsorption - association - diffusion

Chirality, 2017, 29, 315-324; DOI:10.1002/chir.22693

Novel β-cyclodextrin-eosin conjugates

6-Monoamino-β-cyclodextrin scaffold, Photogeneration of singlet oxygen

Beilstein journal of organic chemistry, 2017, 13, 543-551
Jicsinszky, L.; Caporaso, M.; Calcio, G. E.; Cravotto, G.; Giovannoli, C.

Synthesis of Randomly Substituted Anionic Cyclodextrins in Ball Milling

Minimizing the reagent’s hydrolysis, Higher degree of substitution (DS) and more homogeneous DS distribution, Mechanochemical activation

Molecules, 2017,